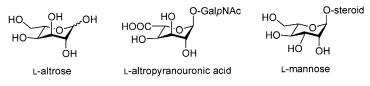


Tetrahedron Letters 41 (2000) 3119-3122

TETRAHEDRON LETTERS

Efficient synthesis of L-altrose and L-mannose

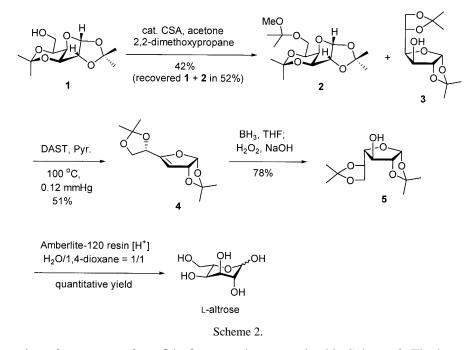

Shang-Cheng Hung,* Cheng-Chung Wang and Shankar R. Thopate Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan Received 20 December 1999; revised 25 January 2000; accepted 25 February 2000

Abstract

Two convenient routes for the synthesis of L-altrose and L-mannose from 1,2:3,5-di-O-isopropylidene- β -L-idofuranose in four and six steps via the stereoselective hydroboration and hydrogenation of olefins as key steps are described here, respectively. © 2000 Elsevier Science Ltd. All rights reserved.

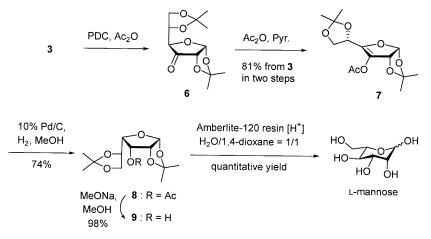
Keywords: carbohydrates; glycosides; L-altrose; L-mannose.

L-Altropyranosyl and L-mannopyranosyl units are structural elements of several naturally occurring products, as outlined in Scheme 1. L-Altrose is a component of the extracellular polysaccharide from *Butyrivibrio fibrisolvens* strain CF3.¹ The O-specific polysaccharide of the bacterium *Proteus mirabilis*, a human opportunistic pathogen causing urinary tract infections, contain L-altropyranouronic acid as a new component of O-antigens.² L-Mannopyranosides had been found in the sugar units of steroid glycosides³ and their phenol derivatives are potent substrates for determining the α -L-mannosidase activity of commercial naringinase.⁴



Approaches for the synthesis of L-altrose have been reported including the asymmetric Sharpless epoxidation of olefins followed by ring opening,⁵ intramolecular Tishchenko reactions of protected hexos-5-uloses⁶ and bromination of Δ^4 -uronate followed by a three-step conversion.⁷ Some efforts had also been made toward the L-mannose comprising the asymmetric hetero Diels–Alder reaction followed by stereoselective hydroboration⁸ and the applications of enantioselective Sharpless epoxidation⁵ as well as dihydroxylation⁹ of olefins. In association with our interest in the synthesis of biologically important L-hexoses, we have explored herein two short routes for the synthesis of L-altrose and L-mannose, respectively.

^{*} Corresponding author.


^{0040-4039/00/\$ -} see front matter $\, \odot$ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)00363-4

Scheme 2 illustrates an efficient synthesis of L-altrose from 1,2:3,5-di-O-isopropylidene-β-Lidofuranose 1 in four steps. The starting material 1, generated from diacetone α -D-glucose in three steps,¹⁰ underwent orthogonal isopropylidene rearrangement with a solution of 2,2-dimethoxypropane and acetone in the presence of catalytic amount of (\pm) -camphorsulfonic acid at room temperature to provide 1,2:5,6-di-O-isopropylidene- β -L-idofuranose **3** as a white solid (42% after recrystallization from hexane) and a mixture of 2 and unreacted 1 in ca. 52% yield. This mixture can be re-utilized under the same conditions and similar results are obtained. Epimerisation of **3** at C-4 into 1,2:5,6di-O-isopropylidene- β -L-altrofuranose 5 could be carried out by sequential elimination of H₂O and stereoselective hydroboration via the olefin 4 as an intermediate. Diethylaminosulfur trifluoride $(DAST)^{11}$ and pyridine were consecutively added to a solution of **3** in dichloromethane at 0°C under nitrogen. The mixture was subjected to distillation by the Kugelhror apparatus at 100°C under 0.12 mmHg to give the olefin 4^{12} (51%) which was treated with borane reagent followed by oxidative work-up to provide 5^{12} as a single isomer in 78% yield. The high stereoselectivity is perhaps due to the steric hindrance of a 5.5-cis-fused ring configuration, forming the 3-hydroxy group toward up-face. Acidic hydrolysis of 5 in the presence of Amberlite-120 resin (H⁺ form) afforded the desired L-altrose in quantitative yield. Comparison of our data with the literature report¹³ revealed identity with respect to ¹H and ¹³C NMR spectra.

The preparation of L-mannose from **3** in five steps is summarized in Scheme 3. The key step involving the inversion of chiral centers in **3** at C-3 and C-4 positions could be achieved by *syn*-reduction of the enol acetate **7**. Oxidation of **3** with PDC and acetic anhydride¹⁴ led to the ketone **6** which underwent enolization in pyridine and acetic anhydride to furnish the enol acetate **7**¹² (81% from **3** in two steps). Stereoselective hydrogenation in the presence of 10% Pd/C as the catalyst provided 3-*O*-acetyl-1,2:5,6-di-*O*-isopropylidene- β -L-mannofuranose **8**¹² in 74% yield. The highly stereoselective *syn*-addition of hydrogen molecule with 3-*endo* double bond occurring from less-hindered side is perhaps induced by the *cis*-fused ring junction. Similar transformation of 3-*O*-acetyl-1,2:5,6-di-*O*-isopropylidene- α -D-*erythro*-hex-3-endofuranose into 1,2:5,6-di-*O*-isopropylidene- α -D-*g*ulofuranose via the NaBH₄ reduction had

been reported in 34% yield.¹⁵ The yield can be improved by the hydrogenation reaction. Deacetylation of **8** with sodium methoxide in methanol obtained **9** (98%) which was hydrolyzed in acidic media to afford the target L-mannose in quantitative yield. The ¹H and ¹³C NMR spectra are identical with the literature report.¹⁶

Scheme 3.

In conclusion, two convenient routes for the synthesis of L-altrose, L-mannose and their furanosyl derivatives are successfully developed here, respectively. The application of these carbohydrates for the synthesis of biologically important oligosaccharides is currently under investigation.

Acknowledgements

We thank Prof. Sunney I. Chan for his helpful discussions and the National Science Council of Republic of China for financial support.

References

- 1. Stack, R. J. FEMS Microbiol. Lett. 1987, 48, 83.
- Swierzko, A. S.; Shashkov, A. S.; Senchenkova, S. N.; Toukach, F. V.; Ziolkowski, A.; Cedzynski, M.; Paramonov, N. A.; Kaca, W.; Knirel, Y. A. FEBS Lett. 1996, 398, 297.
- 3. Kubelka, W. Phytochemistry 1974, 13, 1805.
- 4. Esaki, S.; Ohishi, A.; Katsumata, A.; Sugiyama, N.; Kamiya, S. Biosci. Biotech. Biochem. 1993, 57, 2099.
- 5. Ko, S. Y.; Lee, A. W. M.; Masamune, S.; Reed III, L. A.; Sharpless, K. B.; Walker, F. J. Tetrahedron 1990, 46, 245.
- 6. Adinolfi, M.; Barone, G.; De Lorenzo, F.; Iadonisi, A. Synlett 1999, 336.
- 7. Bazin, H. G.; Wolff, M. W.; Linhardt, R. J. J. Org. Chem. 1999, 64, 144.
- 8. Tietze, L. F.; Montenbruck, A.; Schneider, C. Synlett 1994, 509.
- 9. Harris, J. M.; Keranen, M. D.; O'Doherty, G. A. J. Org. Chem. 1999, 64, 2982.
- 10. Hung, S.-C.; Puranik, R.; Chi, F.-C. Tetrahedron Lett. 2000, 41, 77.
- 11. Tewson, T. J.; Welch, M. J. J. Org. Chem. 1978, 43, 1090.
- 12. The selected physical data of key compounds is listed. Compound 4: IR (CHCl₃) ν 1669 (m) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.05 (d, *J*=5.1 Hz, 1H, H-1), 4.27 (dd, *J*=5.1, 2.2 Hz, 1H, H-2), 5.23 (d, *J*=2.2 Hz, 1H, H-3), 4.57 (t, *J*=6.8 Hz, 1H, H-5), 4.12 (dd, *J*=8.3, 6.8 Hz, 1H, H-6), 3.91 (dd, *J*=8.3, 6.8 Hz, 1H, H-6), 1.43 (s, 3H, C-CH₃), 1.41 (s, 3H, C-CH₃), 1.39 (s, 3H, C-CH₃), 1.37 (s, 3H, C-CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 159.76 (C), 112.26 (C), 110.29 (C), 106.50 (CH), 99.42 (CH), 83.33 (CH), 71.44 (CH), 67.21 (CH₂), 28.12 (CH₃), 27.81, (CH₃), 26.09 (CH₃), 25.48 (CH₃). Compound **5**: $[\alpha]_{D}^{25} = -17.7$ (*c* 1.0, CHCl₃); mp=87–88°C; IR (CHCl₃) ν 3390 (s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.85 (d, *J*=3.9)

3122

Hz, 1H, H-1), 4.54 (d, J=3.9 Hz, 1H, H-2), 4.40 (t, J=2.5 1H, H-3), 4.23 (ddd, J=9.4, 6.1, 5.0 Hz, 1H, H-5), 4.09 (dd, J=8.7, 6.1 Hz, 1H, H-6), 3.92 (dd, J=8.7, 5.0 Hz, 1H, H-6), 3.77 (dd, J=9.4, 2.5 Hz, 1H, H-4), 2.96 (d, J=3.9 Hz, 1H, OH), 1.49 (s, 3H, C-CH₃), 1.41 (s, 3H, C-CH₃), 1.33 (s, 3H, C-CH₃), 1.30 (s, 3H, C-CH₃); 13 C NMR (100 MHz, CDCl₃) δ 112.76 (C), 109.71 (C), 105.59 (CH), 88.27 (CH), 87.05 (CH), 76.68 (CH), 75.56 (CH), 67.62 (CH₂), 27.04 (CH₃), 26.90 (CH₃), 26.10 (CH₃), 25.31 (CH₃). Anal. calcd for $C_{12}H_{20}O_6$: C,55.37;H,7.74, found: C,55.68; H,7.79. Compound 7: $[\alpha]_D^{28} = -41.5$ (*c* 1.0, CHCl₃); IR (neat) v 1751 (s), 1623 (m) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 6.02 (d, J=5.4 Hz, 1H, H-1), 5.38 (d, J=5.4 Hz, 1H, H-1), 5.38 (d, J=5.4 Hz, 1H, H-1), 5.38 (d, J=5.4 Hz, 1H, H-1) Hz, 1H, H-2), 4.67 (t, J=7.0 Hz, 1H, H-5), 4.10 (dd, J=8.3, 7.0 Hz, 1H, H-6), 3.99 (dd, J=8.3, 7.0 Hz, 1H, H-6), 2.19 (s, 3 H), 1.46 (s, 3 H), 1.43(s, 3 H), 1.43(s, 3 H), 1.37(s, 3 H); 13 C NMR (CDCl₃, 100 MHz) δ 168.42 (C), 144.85 (C), 128.94 (C), 113.27 (C), 110.39 (C), 103.86 (CH), 81.03 (CH), 68.92 (CH), 65.73 (CH₂), 27.88 (CH₃), 27.80 (CH₃), 25.68 (CH₃), 20.48 (CH₃). Compound 8: $[\alpha]_{20}^{20}$ =+26.6 (c 1.0, CHCl₃); IR (neat) v 1750 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 5.70 (d, J=4.1 Hz, 1H, H-1), 5.16 (t, J=5.8 Hz, 1H, H-3), 4.74 (dd, J=5.8, 4.1 Hz, 1H, H-2), 4.50 (dt, J=8.7, 6.0 Hz, 1H, H-5), 4.07 (dd, J=8.7, 6.0 Hz, 1H, H-6), 4.01 (dd, J=8.7, 6.0 Hz, 1H, H-4), 3.97 (dd, J=8.7, 6.0 Hz, 1H, H-6), 2.12 (s, 3H), 1.54 (s, 3H), 1.34 (s, 3H), 1.31 (s, 3H); 13 C NMR (CDCl₃, 75 MHz) δ 170.15 (C), 114.63 (C), 109.57 (C), 104.68 (CH), 79.44 (CH), 73.49 (CH), 71.11 (CH), 67.18 (CH₂), 26.90 (CH₃), 26.73 (CH₃), 25.56 (CH₃), 20.74 (CH₃). Compound **9**: $[\alpha]_{D}^{30} = +3.4$ (c 1.1, CHCl₃); IR (neat) ν 3502 (br) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 5.68 (d, J=4.2 Hz, 1H, H-1), 4.65 (dd, J=5.8, 4.2) Hz, 1H, H-2), 4.55 (dt, J=8.7, 6.0, 1H, H-5), 4.28 (t, J=5.8, 1H, H-3), 4.11 (dd, J=8.7, 6.0 Hz, 1H, H-6), 3.96 (dd, J=8.7, 6.0, 1H, H-6), 3.96 (dd, J=8.7, 1H, H-6), 3.96 (dd, J 6.0 Hz, 1H, H-6), 3.83 (dd, J=8.7, 5.8 Hz, 1H, H-4), 3.00–2.80 (bs, 1H, OH) 1.57 (s, 3H), 1.41 (s, 3H), 1.38 (s, 3H), 1.35 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 114.77 (C), 109.67 (C), 105.06 (CH), 81.87 (CH), 80.13 (CH), 73.56 (CH), 70.06 (CH), 67.38 (CH₂), 26.99 (CH₃), 26.79 (CH₃), 25.37 (CH₃).

- 13. The Aldrich Library of ¹³C and ¹H FT NMR Spectra; Pouchert, C. J.; Behnke, J., Ed.; Aldrich Chemical Company, Inc., USA, Vol. I (1), p. 301B.
- 14. Reckendorf, W. M. Chem. Ber. 1969, 102, 1071.
- 15. Reckendorf, W. M. Methods in Carbohydrate Chemistry 1972, 6, 129.
- 16. The Aldrich Library of ¹³C and ¹H FT NMR Spectra; Pouchert, C. J.; Behnke, J., Eds.; Aldrich Chemical Company, Inc., USA, Vol. I (1), p. 299B.